Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Communities & Collections
  • SDGs
  • Sign in
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
Please use this identifier to cite or link to this item: http://scholars.ntou.edu.tw/handle/123456789/25877
DC FieldValueLanguage
dc.contributor.authorLin, Hong-Ting Victoren_US
dc.contributor.authorYang, Tien-Weien_US
dc.contributor.authorLu, Wen-Jungen_US
dc.contributor.authorChiang, Hong-Jhenen_US
dc.contributor.authorHsu, Pang-Hungen_US
dc.date.accessioned2025-06-07T06:59:19Z-
dc.date.available2025-06-07T06:59:19Z-
dc.date.issued2025-05-15-
dc.identifier.issn0023-6438-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25877-
dc.description.abstractAntibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67-97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofLWT-FOOD SCIENCE AND TECHNOLOGYen_US
dc.subjectFood safetyen_US
dc.subjectAntimicrobial resistanceen_US
dc.subjectMALDI-TOF MSen_US
dc.subjectMachine learningen_US
dc.subjectRapid detectionen_US
dc.titleMachine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.lwt.2025.117860-
dc.identifier.isiWOS:001486263400001-
dc.relation.journalvolume224en_US
dc.identifier.eissn1096-1127-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Food Science-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Bioscience and Biotechnology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptBachelor Degree Program in Marine Biotechnology-
crisitem.author.orcid0000-0002-8737-208X-
crisitem.author.orcid0000-0001-6873-6434-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgCollege of Life Sciences-
Appears in Collections:生命科學暨生物科技學系
食品科學系
Show simple item record

Page view(s)

42
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Explore by
  • Communities & Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback