Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25877
標題: Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing
作者: Lin, Hong-Ting Victor 
Yang, Tien-Wei
Lu, Wen-Jung
Chiang, Hong-Jhen
Hsu, Pang-Hung 
關鍵字: Food safety;Antimicrobial resistance;MALDI-TOF MS;Machine learning;Rapid detection
公開日期: 15-五月-2025
出版社: ELSEVIER
卷: 224
來源出版物: LWT-FOOD SCIENCE AND TECHNOLOGY
摘要: 
Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67-97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.
URI: http://scholars.ntou.edu.tw/handle/123456789/25877
ISSN: 0023-6438
DOI: 10.1016/j.lwt.2025.117860
顯示於:生命科學暨生物科技學系
食品科學系

顯示文件完整紀錄

Page view(s)

42
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋