Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • 首頁
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
  • 分類瀏覽
    • 研究成果檢索
    • 研究人員
    • 單位
    • 計畫
  • 機構典藏
  • SDGs
  • 登入
  • 中文
  • English
  1. National Taiwan Ocean University Research Hub
  2. 生命科學院
  3. 食品科學系
請用此 Handle URI 來引用此文件: http://scholars.ntou.edu.tw/handle/123456789/25877
DC 欄位值語言
dc.contributor.authorLin, Hong-Ting Victoren_US
dc.contributor.authorYang, Tien-Weien_US
dc.contributor.authorLu, Wen-Jungen_US
dc.contributor.authorChiang, Hong-Jhenen_US
dc.contributor.authorHsu, Pang-Hungen_US
dc.date.accessioned2025-06-07T06:59:19Z-
dc.date.available2025-06-07T06:59:19Z-
dc.date.issued2025-05-15-
dc.identifier.issn0023-6438-
dc.identifier.urihttp://scholars.ntou.edu.tw/handle/123456789/25877-
dc.description.abstractAntibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67-97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.en_US
dc.language.isoEnglishen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofLWT-FOOD SCIENCE AND TECHNOLOGYen_US
dc.subjectFood safetyen_US
dc.subjectAntimicrobial resistanceen_US
dc.subjectMALDI-TOF MSen_US
dc.subjectMachine learningen_US
dc.subjectRapid detectionen_US
dc.titleMachine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.lwt.2025.117860-
dc.identifier.isiWOS:001486263400001-
dc.relation.journalvolume224en_US
dc.identifier.eissn1096-1127-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.languageiso639-1English-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypejournal article-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Food Science-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptCollege of Life Sciences-
crisitem.author.deptDepartment of Bioscience and Biotechnology-
crisitem.author.deptNational Taiwan Ocean University,NTOU-
crisitem.author.deptBachelor Degree Program in Marine Biotechnology-
crisitem.author.orcid0000-0002-8737-208X-
crisitem.author.orcid0000-0001-6873-6434-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgNational Taiwan Ocean University,NTOU-
crisitem.author.parentorgCollege of Life Sciences-
crisitem.author.parentorgCollege of Life Sciences-
顯示於:生命科學暨生物科技學系
食品科學系
顯示文件簡單紀錄

Page view(s)

42
checked on 2025/6/30

Google ScholarTM

檢查

Altmetric

Altmetric

TAIR相關文章


在 IR 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

瀏覽
  • 機構典藏
  • 研究成果檢索
  • 研究人員
  • 單位
  • 計畫
DSpace-CRIS Software Copyright © 2002-  Duraspace   4science - Extension maintained and optimized by NTU Library Logo 4SCIENCE 回饋